
Research on Decentralized Task Allocation and Collaboration Based on

Multiple AUVs

Minjie Xia

College of Ocean Engineering, Harbin Institute of Technology, Weihai, 264200, China

Minjie.xia.2021@uni.strath.ac.uk

Keywords: Decentralized Task Allocation and Collaboration; Multi-AUV systems；Maritime

activities; Intelligent optimization

Abstract: In the 21st century, extensive human engagement in activities such as marine resource

exploration, maritime transportation, and maritime security has led to a deeper understanding of the

oceans. This increased interest has spotlighted Autonomous Underwater Vehicles (AUVs), which

possess the capability to operate independently and covertly, making them a preferred choice for

diverse underwater tasks. However, as underwater missions grow in complexity, the limitations of

individual AUVs have spurred the exploration of multi-AUV systems. These systems offer higher

efficiency, greater intelligence, and enhanced fault tolerance, rendering them indispensable in both

deep-sea search and rescue missions and national maritime security efforts. Task allocation is a

central challenge in the realm of multi-AUV systems. Balancing factors like search environments,

ocean currents, obstacles, and target locations, various intelligent optimization methods have been

employed. This paper references representative works to explore genetic algorithm-based

decentralized task allocation and Hungarian algorithm-based decentralized task allocation, examining

their potential to enhance cooperative underwater searches. Centralized task allocation faces

robustness and scalability concerns, necessitating decentralized alternatives, particularly for mobile

multi-agent systems. The presented research underscores the significance of decentralized

methodologies in optimizing multi-AUV task assignments. The paper elucidates these two

approaches, discusses their implications, and concludes by presenting an analysis of the results.

Through this study, the paper contributes to advancing the field of multi-AUV systems and their

effective coordination for efficient underwater search operations.

1. Introduction

Since the 21st century, human engagement in a range of activities including marine resource

exploration, maritime transportation and maritime security has facilitated a deeper comprehension of

the oceans. Particularly within these domains, Autonomous Underwater Vehicles (AUVs) have

gained significant attention from scholars both domestically and internationally. AUVs operate

independently of external energy sources and require no physical connection to mother ships,

showcasing exceptional concealment capabilities and an expansive search range. Whether in civilian

or naval contexts, AUVs exhibit broad potential applications, especially as the virtually exclusive

option for deep-sea underwater search missions. Nonetheless, as the complexity of AUV search tasks

continues to mount, the limitations of individual AUV functionalities have led to the prominence of

multi-AUV systems as a pivotal research direction within the field of underwater robotics. In

comparison to single AUV systems, multi-AUV systems offer diversified solutions, accompanied by

elevated work efficiency, heightened levels of intelligence, and enhanced fault tolerance. The

collaborative search facilitated by multi-AUV systems bears indispensable and irreplaceable

significance in civilian deep-sea search and rescue endeavors, as well as in the establishment of

national maritime security.

Currently, the challenge of task allocation remains a significant obstacle for multi-AUV systems.

It necessitates a comprehensive consideration of various factors such as the underwater search

environment, ocean current magnitude and direction, obstacles, restricted zones, and the central

2024 10th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2024)

Copyright © (2024) Francis Academic Press, UK DOI: 10.25236/icmmct.2024.022152

position of the target to judiciously allocate different areas awaiting exploration among individual

AUVs.

Task allocation algorithms can be categorized into centralized and distributed approaches [1]. Due

to recognized limitations in robustness and scalability, the need for developing decentralized task

allocation algorithms has emerged, particularly in the context of multi-agent systems. In a centralized

setup, a central planner possessing comprehensive information allocates tasks to all agents based on

specific requirements. However, this approach disregards the potential computational capabilities of

individual agents and exposes the system to security vulnerabilities. If communication between the

central planner and agents encounters issues, tasks might remain unassigned, leading to incomplete

assignments. In contrast, within a decentralized framework, each agent independently determines its

task allocation using its own computational resources [2]. This approach eliminates the dependency

on a single central planner and enhances the system's resilience to breakdowns in communication.

Agents communicate among themselves to resolve conflicts and enhance their allocations. In the

distributed mindset of task allocation, subsystems lack complete information about the entire system,

and task allocation is a negotiated process involving multiple robots. Furthermore, these robots

independently complete task allocation based on their perception of the environment. The application

of market mechanism-based methods is widespread, with task allocation based on market

mechanisms relying on negotiation among robots through certain protocols to ultimately achieve task

distribution.

In paper [3], the authors present the Consensus Based Parallel Auction and Execution (CBPAE)

algorithm. This algorithm is designed as a distributed, market-based approach for multi-robot task

allocation (MRTA). Its primary focus is on dynamically allocating tasks, specifically addressing the

task allocation challenges encountered within a Multi-Robot System (MRS) operating within a

healthcare environment, such as a care home. Amanda et al. introduce refinements to the distributed

Performance Impact (PI) algorithm in their work. They also showcase the outcomes of their

experimental trials, highlighting how their contributions propel the advancement of the current state-

of-the-art. Specifically, their enhancements prove significant in the realm of single-task, single-robot,

time-extended, multi-agent task assignment, especially for missions with time-critical requirements

[4]. In the context of the paper [5], a team of researchers introduces BnB FMS, a distributed algorithm

tailored for task allocation. This algorithm ingeniously combines online domain pruning with fast-

max-sum techniques. Moreover, it strategically integrates branch-and-bound search during the

computation of messages that are to be transmitted by a function. This proactive approach facilitates

the pruning of the state space, thereby curtailing the portions that need to be explored more

extensively. Patel and colleagues present a pioneering methodology for decentralized multi-agent

collaborative search within the domain of task allocation. Their approach leverages a decentralized

genetic algorithm, introducing a novel way to address task allocation challenges [6]. In a similar vein,

Choi and Kim introduced a two-stage genetic algorithm-centered approach for decentralized

allocation. Here, each agent utilizes a genetic algorithm to define its task sequence and subsequently

engages in communication with other agents to optimize costs through task exchange [7]. The

Decentralized Hungarian (DH) algorithm, akin to the Consensus-Based Auction Algorithm (CBAA),

was replaced by the Hungarian algorithm [8]. The advantages of Particle Swarm Optimization (PSO)

algorithm lie in its simplicity, minimal parameter tuning, and rapid convergence. Geng et al.

introduced an enhanced PSO algorithm for uncertain rescue task allocation with time constraints,

with a particular focus on robot rescue task assignment [9].

This study draws inspiration from two seminal references [6] and [8], aiming to incorporate their

ideas of distribution and decentralization to address practical issues: in underwater target search

scenarios involving collaborative efforts of multiple Autonomous Underwater Vehicles (AUVs),

effective task allocation is required. Throughout this process, maintaining optimal allocation and

minimizing time consumption are crucial factors. Reference [6] employs a continuous running genetic

algorithm that facilitates the exchange of complete solutions (task sequence sets) among agents. This

real-time adaptability allows for ongoing refinement of task allocation during execution, potentially

resulting in global optimization for the team. In contrast, [8] originates from the centralized nature of

153

the original Hungarian algorithm, initially employing a cost matrix encompassing all data for initial

allocation. Subsequently, an iterative cost minimization process generates the optimal solution.

Nevertheless, centralized task allocation methods really have limitations in terms of robustness and

scalability. Therefore, the development of decentralized task allocation algorithms based on the

Hungarian method becomes pivotal. This study initiates by introducing the two aforementioned

methods individually, followed by a discussion of their respective characteristics. Finally, the study

concludes by presenting a data analysis of the results achieved through these methods. Through this

investigation, the paper contributes to advancing the comprehension of multi-agent systems and offers

insights into the efficiency of decentralized task allocation approaches.

2. Methods

2.1 Decentralized Genetic Algorithm

The optimization approach proposed by R. Patel et al. in their work [6] primarily focuses on

decentralization and parallelization. In their study, the researchers introduce a parallelized strategy

employing a genetic algorithm (GA) to address the task assignment challenge within a multi-agent

system. Their method involves agents concurrently executing tasks in real-time while refining the

allocation process. Every agent retains and enhances its individual population of solutions, signifying

sets of task sequences for upcoming assignments. A key aspect of their approach is the coordination

and sharing of solutions among agents. Periodically, agents exchange their best solutions and

integrate received solutions into their own populations. This collaborative exchange of high-quality

solutions enables agents to reach consensus and take advantage of the inherent parallelism in genetic

algorithms. Furthermore, by allocating a distinct thread for the GA, agents can persistently search for

enhanced solutions while carrying out tasks. The decentralized genetic algorithm proposed in this

research provides a dynamic and adaptive solution for the task allocation problem in a multi-agent

environment.

2.1.1 Process of Genetic Algorithm

The genetic algorithm (GA) is inspired by the evolutionary process in nature and uses simulated

chromosome crossover, mutation, and selection to solve optimization problems. In this study, the

chromosome encoding and decoding method is adopted from the reference [10]. The overall flow of

the genetic algorithm is as follows:

Firstly, I initialize the initial population of chromosomes. This corresponds to the section where

the initial population of routes and breakpoints is generated. Secondly, I calculate the fitness of

individuals in the initial population, this aligns with the code snippet where each individual's total

distance is calculated and stored in the total_dist array. Thirdly, I select individuals from the current

population for chromosome crossover and mutation to generate offspring population. The code

achieves this by performing genetic operations like flipping, swapping, sliding, etc., to generate new

routes and breakpoints. Subsequently, I evaluate the fitness of individuals within the offspring

population. Following the generation of the new population via genetic operations, I compute and

store the fitness of individuals in the offspring population in the total_dist array. Then, I replace the

existing population with the offspring population. I check for a predefined number of iterations or if

the fitness of the population has converged. If these stopping conditions are fulfilled, the iteration is

halted, and the outcome is returned; otherwise, I return to step 3. This part of the process involves

updating the population with the newly generated individuals and checking the termination criteria

such as the number of iterations or convergence of the fitness. The loop in the code iterates through

multiple generations until the termination conditions are met.

2.1.2 Parallel Distributed Genetic Algorithm

Each agent operates with two threads: the first thread manages the execution of a Genetic

Algorithm (GA) and the second thread orchestrates the execution of the task sequence. This is

illustrated in the mathematical model [6], where 𝒙𝒊 = (𝑥𝑖1, … , 𝑥𝑖𝑛(𝑖)) is a task sequence, 𝑑(𝑥𝑖𝑗 , 𝑥𝑖𝑘)

154

is the length between tasks 𝑥𝑖𝑗 and 𝑥𝑖𝑘 ,𝑞1, … , 𝑞𝑚 are the initial locations, 𝑣 is the speed of the agents,

𝑐𝑑(𝒙𝒊) = 𝑑(𝑞𝑖 , 𝑥𝑖1) + ∑ 𝑑(𝑥𝑖,𝑗−1, 𝑥𝑖𝑗)
𝑛(𝑖)
𝑗=2 represents the distance of agent 𝑖 to complete the task

sequence.

Here I introduce two cost function, which are

𝑐(𝒙) = ∑ 𝑐𝑑(𝒙𝒊)

𝑚

𝑖=1

(1)

𝑐(𝒙) =
max{𝑐𝑑(𝒙𝟏), … , 𝑐𝑑(𝒙𝒊)}

𝑣
. (2)

The structure is depicted in Figure 1 [6]. The initial thread employs an adapted version of a known

GA [11], designed for solving the mTSP (multiple Traveling Salesmen Problem), to tackle the task

allocation issue.

Figure 1. Basic structure [6]

The pseudocode for the Task Sequence Execution thread is provided in Algorithm 1 [6].
Algorithm 1: Pseudocode for task sequence execution run in a separate thread on agent i.
1. function TASK_SEQUENCE_EXECUTION()
2. while mission not complete:
3. if num_agents > num_locations:
4. current_solution ← solution from nearest neighbors
5. else:
6. current_solution ← current best solution from GA

7. end if
8. task_sequence ← current_solution{i}
9. execute(task_sequence)

10. send information to all other agents

11. receive information from whoever responds
12. store received solutions for incorporation into GA
13. end while
14. end function

Algorithm 1 starts from a function defined as " EXECUTION_TASK_SEQUENCE". The main

loop of the function runs as long as tasks are not completed. Within this loop, the following steps are

continuously executed. Firstly, it checks if the count of agents involved in the tasks is greater than

the count of locations to be covered. This condition (number_of_agents > number_of_locations)

implies that there are more agents involved in the tasks than the number of tasks to be completed.

This might suggest a scenario where tasks need to be allocated among agents. If this condition is met,

the current solution of agent i is assigned using a solution generated by a nearest-neighbor method.

This approach aims to efficiently allocate tasks based on the proximity between agents and task

locations. Secondly, if the condition in step 1 is not met (number_of_agents <=

number_of_locations), the current best solution of agent i is assigned, which was previously generated

by a genetic algorithm (GA) used for optimizing the task sequence. Now, the algorithm holds the

current solution of agent i. The sequence of tasks to be executed is determined based on the assigned

current solution from the previous steps. Then, agents start executing the assigned task sequence.

155

After executing the task sequence, agents send messages to all other agents. This may include the

status of tasks executed or any relevant updates. Next, agents wait to receive responses from other

agents regarding the messages they sent. Upon receiving responses, agents process the received

information. This information may include solutions or updates related to task sequences executed

by other agents. The received solutions are stored, possibly for integration into the aforementioned

genetic algorithm. These received solutions can contribute to improving the optimization of task

sequences across all agents. After that, the loop continues executing the above steps as long as tasks

are not completed. The "EXECUTION_TASK_SEQUENCE " function ends when tasks are completed.

This pseudocode outlines the algorithm for agents to execute task sequences within a larger task.

The algorithm adjusts its approach based on the count of agents and tasks, employing either a nearest-

neighbor strategy or a genetic algorithm for task allocation. Agents execute their task sequences,

communicate with other agents, and incorporate received solutions into their optimization process,

ensuring efficient task execution and collaboration among multiple agents.

2.2 Hungarian Algorithm and DHBA Algorithm

When the Hungarian algorithm is applied in an industrial environment, it demonstrates a rapid

ability to solve task assignment problems, exhibiting excellent efficiency. The Hungarian algorithm

employs specialized procedures to solve matching problems or more general allocation planning

problems. It produces the minimum matching based on the provided cost matrix.

2.2.1 Hungarian Algorithm

This algorithm employs a cost matrix for allocation, where each element, cij, symbolizes the cost

(or inverse of the reward) linked with assigning task j to agent i. To achieve an optimal assignment,

Algorithm 2 [8] defines matrix operations through the subsequent steps.
Algorithm 2 Hungarian Algorithm

1. Form a n by n cost matrix

2. Step 1: Subtract the smallest entry in each row from all the entries of its row

3. Step 2: Subtract the smallest entry in each column from all the entries of its column

4. Step 3: Draw lines through appropriate rows and columns so that all the zero entries of the cost matrix are

covered and the minimum number of such lines is used

5. Step 4:

6. procedure Test for optimality:

7. if the minimum number of covering lines is n:

8. An optimal assignment of zeros is possible and the assignment is finished

9. end if

10. if the minimum number of covering lines is less than n:

11. An optimal assignment is not yet possible. In that case, proceed to Step 5

12. end if

13. end procedure

14. Step 5: Determine the smallest entry not covered by any line. Subtract this entry from each uncovered row,

and then add it to each covered column. Return to Step 3

To begin, I construct an n x n matrix to signify task-to-agent assignment costs. Each cell (i, j) in

the matrix denotes the cost of assigning task i to agent j. I initiate row reduction by finding the

minimum value within each row and subtracting it from all entries in that row. This step normalizes

the minimum value in each row to zero. Then, I proceed to column reduction. By detecting the

smallest value in each column and deducting it from all entries within that column, I normalize the

minimum value in each column to zero. After this, the process of line covering is initiated. This

involves strategically placing lines across rows and columns to encompass all zero entries in the

matrix. The objective is to cover the maximum number of zeros with the fewest lines, thereby

identifying potential assignments for an optimal solution. For assessing optimality, I examine whether

the minimum lines required for coverage match n (the number of tasks/agents). If they do, an optimal

assignment is achieved, and the algorithm terminates. If the minimum lines used are fewer than n, I

move on to Step 5. In the final step, involving matrix updating and repetition, I identify the matrix's

smallest entry that isn't enclosed by any line. This entry's value is subtracted from every uncovered

row and added to each covered column. Subsequently, I loop back to Step 3, repetitively executing

156

the procedure of line coverage and assessing optimality.

In the mentioned paper, the auction algorithm and the Hungarian algorithm's performance is

conducted. The analysis focuses on how the average time required for the execution of each group of

drones increases with the growing number of agents. Table 1 in [8] clearly indicates an exponential

growth trend in the computation time needed for the auction algorithm to accomplish the allocation.

The Hungarian algorithm demonstrates a clear advantage in terms of scalability.

Table 1. Mean time of Auction and Hungarian Algorithm. [8]

Groups Average time (sec)

A H

#1 2 0.33 0.34

#2 4 0.34 0.34

#3 8 0.36 0.37

#4 12 0.47 0.38

#5 16 0.85 0.38

#6 24 2.57 0.41

#7 32 8.13 0.42

#8 50 71.01 0.43

2.2.2 Decentralized Hungarian-Based Algorithm (DHBA)

This paper introduces a Decentralized Hungarian-Based Algorithm (DHBA) for tackling the task

allocation problem in scenarios where network connectivity is limited. In this context, each

Autonomous Underwater Vehicle (AUV) only interacts with a subset of agents, forming local

networks. Consequently, agents possess partial information and lack global awareness.

The algorithm's primary goal is to attain an optimal task allocation that minimizes overall costs.

To achieve this, ensuring network connectivity is crucial, indicated by the positive value of the second

smallest eigenvalue (𝜆2) of the network's Laplacian matrix. This safeguards the convergence of each

agent's cost matrix to a stable state during the algorithm's final phase. A loss of network connectivity

(𝜆2 = 0) leads to deviation from the optimal solution.

The core idea of the DHBA is as follows: Firstly, each agent possesses a cost matrix with

information about tasks, such as distances to targets. Secondly, at each step, agents communicate

directly with their neighbors and exchange updated data. Each agent merges its cost matrix data with

its neighbors' data to obtain more accurate task allocation information. Subsequently, through the

iterative process, each agent gradually obtains the same cost matrix, representing the optimal task

allocation solution. Next, the algorithm optimizes task allocation iteratively by exchanging

information within the local network, gradually converging to the optimal solution.
Algorithm 3 DHBA Algorithm

1. procedure Initialization:

2. For AUV 𝑖, form a cost matrix 𝐶𝑖, in which each element 𝐶𝑟𝑗
𝑖 represents the distance between AUV 𝑟 to target 𝑗, such

that:

3. if 𝑟 = 𝑖:
4. 𝐶𝑟𝑗

𝑖 = √(𝑋𝑢(𝑟) − 𝑋𝑡(𝑗))2 + (𝑌𝑢(𝑟) − 𝑌𝑡(𝑗))2

5. else:

6. 𝐶𝑟𝑗
𝑖 = ∞

7. end if

8. end procedure

9. procedure Task allocation

10. Phase 1: Apply Hungarian Algorithm (Algorithm 3) and get assignment for AUV 𝑖
11. Phase 2: Update 𝐶𝑖
12. procedure For AUV 𝑖:
13. Connect with neighbor (AUV) 𝑘 and receive 𝐶𝑘
14. Update 𝐶 𝑖 such that:

15. if 𝐶𝑖𝑗
𝑘 ≠ ∞:

16. 𝐶𝑖𝑗
𝑖 = 𝐶𝑖𝑗

𝑘

17. end if

18. end procedure

19. Return to Phase 1

20. end procedure

157

The pseudocode for DHBA is provided in Algorithm 3. Initially, every unmanned aerial vehicle

(AUV) detects its own position (𝑋𝑢(𝑖), 𝑌𝑢(𝑖)) , along with the positions of neighboring AUVs

(𝑋𝑢(𝑘), 𝑌𝑢(𝑘)), as well as the locations of all targets (𝑋𝑡(𝑗), 𝑌𝑡(𝑗). Subsequently, AUV 𝑖 constructs

the neighbor matrix 'G' based on the collected data. Additionally, AUV 𝑖 generates an individualized

cost matrix 𝑪𝑖. The entries within this matrix are predominantly set to infinity, except for the 𝑖𝑡ℎ row.

This row encompasses the distances between AUV 𝑖 and other neighboring AUVs within its local

network. The DHBA (Decentralized Hungarian-Based Algorithm) algorithm operates through a

cyclic process, alternating between two primary phases. In the initial phase, each AUV employs the

centralized Hungarian algorithm outlined in Algorithm 2. This phase's purpose is to guarantee that

every AUV is assigned a target for the entire mission duration, thereby achieving an optimal solution

for task allocation. Following this, the algorithm advances to the second phase. Here, AUV 𝑖
establishes connections with its neighboring AUVs, facilitating the exchange of cost matrices.

Consequently, AUV 𝑖 updates its own cost matrix in accordance with the received data. During this

communication stage, AUV 𝑖 compares its cost matrix with those of its neighbors to gain

supplementary information, which aids in refining task allocation optimization. Progressing through

Phase 2, the aim is for AUV 𝑖’s cost matrix to synchronize with the cost matrices of all other

neighboring AUVs. As each AUV successfully assimilates global network information into its cost

matrix, the task allocation converges to a stable state. This convergence signifies the completion of

the DHBA algorithm's execution.

3. Results

3.1 Section of Decentralized GA

3.1.1 Testing Procedure for decentralized GA

In study [6], the researchers conducted a comparative analysis between the decentralized Genetic

Algorithm (GA) and alternative decentralized task allocation methods. This assessment involved a

range of problem instances with varying sizes. To ensure the results' consistency despite fluctuations

in simulation conditions and the stochastic nature of the genetic algorithm (GA) approach, each case

was subjected to 20 distinct trials. Our implementations were carried out using the Python

programming language, while the simulations were conducted through ROS. These discrete processes,

effectively mirroring the functionality of a decentralized system. For effective inter-agent

communication, each agent featured a communication interface scripted in C++, enabling seamless

message dissemination among all system agents. The agents' velocity was set at a uniform 5 meters

per second, and the invocation frequency was maintained at 0.01 seconds.

In reference to [6], a series of tests were carried out across five distinct instances. In these instances,

the points were chosen at random in an area spanning 100 meters by 100 meters. The instances had

different sizes (𝑛 × 𝑚) of 10 × 5, 20 × 4, 30 × 3, 35 × 5, and 40 × 6. Instances of sizes 30 × 3 and

35 × 5 are illustrated in Figure 2 [6] below.

(a) (b)

Figure 2. (a) 30 × 3 and (b) 35 × 5. The entities denoted as "AUV#" are represented by circular

shapes, while the points of interest are visually depicted as red squares. The axes on the graph

provide a metric for position, measured in meters. [6]

158

Multiple experiments were also conducted in the paper, comparing various decentralized task

allocation methods as benchmarks. These methods included Greedy Nearest Neighbor (NN),

Decentralized Hungarian Algorithm (DH) [12], Consensus-Based Auction Algorithm (CBAA) [13],

Asynchronous Consensus-Based Bidding Algorithm (ACBBA) [14], Performance Impact Algorithm

(PIA) [15], and Hybrid Information and Plan Consensus (HIPC) [16].

In these methods, a common underlying structure was employed. Figure 3 [6] below illustrates

this structure, with only one task sequencing execution thread running. The execution thread

perpetually operates in a continuous manner, alternating between two primary phases.

Figure 3. Basic structure. [6]

3.1.2 Results Analysis for decentralized GA

The Paper simultaneously considered performance metrics of total time and total distance. A

comprehensive evaluation of all methods and variables was undertaken to analyze their individual

performance across different metrics. The objective was to determine which variables exhibited the

most favorable outcomes for each metric.

Table 2 [6] below (Time) depicts the average time taken to access all the designated points of

interest for each instance when employing each method.

Table 2. The average time (measured in sec) required to cover all designated points was calculated

more than 20 separate trials on every approach and instance. The bold represent the most optimal

averages achieved for each instance. [6]

 Instance

Approach 10 * 5 20 * 4 30 * 3 35 * 5 40 * 6

NN 19.6 45.5 41.6 33.4 26.2

CBAA-ms 19.6 45.5 41.6 33.4 26.2

CBAA-mm 14.7 28.8 41.4 27.6 26.0

DH-ms 11.6 29.6 42.1 25.8 23.5

DH-mm 11.6 29.6 42.7 25.9 23.3

ACBBA-ms 15.1 24.1 34.4 27.6 26.8

ACBBA-mm 14.6 25.5 34.4 24.6 25.8

PIA 19.2 31.3 45.1 34.6 31.8

HIPC 11.8 27.9 34.4 24.0 24.7

GA-ms 12.0 26.0 33.9 21.8 23.6

GA-mm 12.5 23.3 33.8 24.2 23.3

GA-multi 14.1 22.5 33.3 22.3 22.5

In the case of 10 * 5 instance, both the DH-ms and DH-mm methods exhibit the best average time

of 11.6 seconds, showcasing their outstanding performance for this smaller-scale problem. Also, the

GA-ms method performs well with an average time of 12.0 seconds. Shifting to 20 x 4 scenario, the

GA-multi method stands out with the best average time at 22.5 seconds, demonstrating impressive

results. Notably, the GA-mm method also performs admirably with an average time of 23.3 seconds.

When it comes to 30 * 3 instance, the GA-mm method takes the lead with the best average time of

159

33.3 seconds, outperforming alternative methods. Both the HIPC and ACBBA methods also hold up

well, each achieving an average time of 34.4 seconds. In the context of 35 * 5 instance, it's the GA-

ms and GA-multi variants that shine, recording the best average times of 21.8 and 22.3 seconds,

respectively, and significantly outpacing other approaches. Finally, for 40 * 6 instance, the GA-multi

method once again demonstrates superiority with the best average time of 22.5 seconds, highlighting

its remarkable efficiency.

In summary, in most instances, variants of the decentralized GA method exhibit impressive

performance, particularly the GA-multi method, which excels on medium and large-scale instances.

The DH methods perform well on small-scale problems but show relatively weaker performance as

the problem scale increases. The CBAA and PIA methods have relatively poorer performance, and

their suitability may depend on specific scenarios.

Table 3. The average total distance covered by all agents. The bold values highlight the most

favorable averages achieved for each specific instance. [6]

 Instance

Approach 10 * 5 20 * 4 30 * 3 35 * 5 40 * 6

NN 486.3 903.8 603.3 826.8 773.2

CBAA-ms 301.2 517.6 606.7 689 719.4

CBAA-mm 301.5 519.8 602.2 625.2 709.2

DH-ms 256.8 517.8 615.1 584.2 649.6

DH-mm 256.2 516.6 626.7 585.1 641.1

ACBBA-ms 327.8 404.3 441.1 624.8 690.8

ACBBA-mm 334.5 428.8 439.7 520.8 683

PIA 209.8 482.3 508.1 481.5 563.9

HIPC 198.1 401.6 445.0 443.0 590

GA-ms 222.7 448.9 456.6 460.5 600

GA-mm 268.1 429.6 468.8 553.9 636.7

GA-multi 245.6 404.6 455.8 494.9 604

Table 3 [6] presents the average cumulative distances traveled by all agents for each method across

the five instances. Based on the data in the table (where bold numbers represent the shortest distances

for each instance), unlike the case of minimizing total time, the decentralized Genetic Algorithm (GA)

does not exhibit a significant advantage over other algorithms in terms of minimizing the total

distance.

Firstly, GA does not consistently exhibit the best performance across all instances. Apart from

specific cases where certain variants of GA might perform well, such as GA-multi showing

comparable performance to the HIPC method in 20 x 4 instance, GA does not dominate in any

instance. Except for the PIA and HIPC methods, the GA-ms method outperforms most others in 40 x

6 instance. Additionally, with increasing instance sizes, the decentralized GA variants consistently

exhibit superior performance compared to other methods. This observation indicates that the method

showcases commendable scalability.

Overall, while the decentralized Genetic Algorithm approach produces task assignments that excel

over other methods in terms of the minimum time objective, the allocations it finds are not superior

in terms of the minimum total objective. This might be attributed to the fact that other methods might

find optimizing the minimum time objective more challenging, as it requires knowledge of task

sequences of other agents, which isn't a barrier for the decentralized Genetic Algorithm method due

to each agent considering a complete solution. On the other hand, other methods might be more adept

at optimizing the minimum total objective, especially in cases where the instance size isn't large.

Therefore, for smaller instances, the decentralized Genetic Algorithm method fails to find better

solutions. Furthermore, the condition mandating that every agent must be allocated at least one task

could potentially restrict the Genetic Algorithm's ability to discover solutions with more optimal

overall travel distances. This is because, in specific scenarios, employing fewer agents might lead to

a reduction in the collective travel distance.

160

3.2 Section of DHBA

3.2.1 Test Procedure for DHBA

The study involved a comparative analysis between the DHBA (Decentralized Hungarian-Based

Algorithm) proposed in the paper and the existing CBAA (Consensus-Based Auction Algorithm).

Experiments were conducted using a cluster of Autonomous Underwater Vehicles (AUVs) assigned

to monitor multiple targets. The positions of both AUVs and targets were chosen randomly within a

designated application space measuring 𝑚 × 𝑛 units. The communication range was established at

𝑅 = 𝑚/2. The AUVs were categorized into six groups, as detailed in Table 4 [8] provided below.

Throughout these runs, critical parameters such as 𝜆2 (a specific variable), the final assignment

outcomes, and iterations required to reach convergence were meticulously documented.

Table 4. Simulation setup. [8]

Group Agents Count Area Size (units)

1 5 5

2 10 10

3 20 20

4 30 30

5 40 40

6 50 50

3.2.2 Results Analysis for DHBA

During each simulation, 𝜆2 values, final assignments, and convergence steps for both algorithms

were recorded. These results are visualized in Figure 4 [8].

Figure 4. The required iteration count to achieve convergence towards the ultimate assignment,

depicted as a function of λ2, varies across distinct groups: (a) 5 agents, (b) 10 ~, (c) 20 ~, (d) 30 ~,

(e) 40 ~ and (f) 50 ~. [8]

Based on the presented figures, it is evident that when 𝜆2 is larger, the convergence speed of both

algorithms will be faster. When 𝜆2 approaches 0, indicating a fragile network connection, there is a

higher likelihood of conflicts, and CBAA exhibits a noticeably slower convergence speed compared

to DHBA. Consequently, both algorithms necessitate additional iterations to attain the final

assignment outcomes. When the number of agents is set to 5 , CBAA and DHBA demonstrate

relatively similar convergence speeds. However, as the number of agents increases, the difference

between the two becomes more pronounced.

Across all five scenarios, DHBA consistently demonstrates superior performance compared to

CBAA. This can be attributed to DHBA's dependence solely on the connectivity of the AUV system.

In scenarios with loosely connected networks where the value of 𝜆2 is significantly smaller than 1,

the steps necessary to achieve the final assignment are equivalent to the total number of AUVs within

the network. Conversely, due to the requirement for more steps to resolve conflicts, CBAA mandates

a higher number of iterations for convergence. Moreover, CBAA's reliance on auction algorithms

161

generally leads to increased analysis time in comparison to the Hungarian algorithm employed within

DHBA.

When contrasted with CBAA, the efficacy of the proposed DHBA in yielding optimal assignments

becomes evident. The quantified cost difference, denoted as ∆cost, is outlined as the divergence

between the global costs produced by CBAA (CCBAA) and DHBA (CDHBA) — in essence, ∆cost

= CCBAA - CDHBA. This relationship is visually depicted in the subsequent Figure 5 [8].

Figure 5. The cost discrepancy, represented as ∆cost, between CBAA and DHBA across various

agent groups in relation to distinct 𝜆2 values. [8]

The depicted figure vividly displays the positive nature of cost differences across all instances,

and these differences amplify as 𝜆2 increases. Notably, the fluctuations in cost disparities across

diverse instances remain relatively subdued with the upsurge in 𝜆2 values. This consistency

underscores DHBA's persistent superiority over CBAA, preserving a well-balanced advantage.

These outcomes affirm that the proposed DHBA consistently outperforms CBAA. This is

attributed to the inherent characteristics of the original Hungarian algorithm, allowing DHBA to

consistently furnish optimal solutions for linking multi-agent networks. CBAA's reliance on an

auction mechanism introduces deviations from optimality, particularly as the agent count and

conflicts escalate. Conversely, the DHBA, leveraging a centralized Hungarian algorithm, ensures

absolute optimality in its results.

4. Conclusion

This paper leverages two innovative papers to conduct an in-depth analysis of the multi-AUV task

allocation optimization problem and achieves successful resolutions. It demonstrates the viability of

the decentralized algorithmic approach in this context. The first method employs a parallelized

genetic algorithm. The results indicate that the decentralized genetic algorithm rapidly converges to

high-quality solutions on the considered instances, outperforming existing methods for task

completion time on larger instances. The second method develops a decentralized task allocation

algorithm based on the Hungarian algorithm. It concludes that the algorithm consistently generates

optimal solutions as long as network connectivity is maintained. Moreover, it outperforms CBAA in

various aspects, including performance, analysis time, convergence speed, allocation optimality, and

computational demands. To summarize, both approaches showcase distinct advantages, notably

excelling in performance compared to conventional algorithms. Both algorithms robustly address the

task allocation challenge posed in this underwater search scenario.

References

[1] J. Chen and P. Dames, "Distributed and collision-free coverage control of a team of mobile

sensors using the convex uncertain voronoi diagram." 2020 American Control Conference (ACC)

(IEEE 2020).

[2] J. Chen and P. Dames, "Distributed multi-target tracking for heterogeneous mobile sensing

162

networks with limited field of views." 2021 IEEE international conference on robotics and

automation (IEEE 2021).

[3] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, “A distributed task allocation

algorithm for a multi-robot system in healthcare facilities,” in Journal of Intelligent & Robotic

Systems 80 (2015), pp. 33–58.

[4] A. Whitbrook, Q. Meng, and P. W. Chung, “A novel distributed scheduling algorithm for time-

critical multi-agent systems,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IEEE, 2015), pp. 6451–6458.

[5] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating

agents”, IEEE transactions on systems, man, and cybernetics, part b (cybernetics) (1996), Vol. 26,

No. 1, pp. 29–41.

[6] R. Patel, E. Rudnick-Cohen, S. Azarm, M. Otte, H. Xu, and J. W. Herrmann, “Decentralized task

allocation in multi-agent systems using a decentralized genetic algorithm,” in International

Conference on Robotics and Automation (IEEE, 2020), pp. 3770–3776.

[7] H. Choi, Y. Kim, and H. Kim, “Genetic algorithm based decentralized task assignment for

multiple unmanned aerial vehicles in dynamic environments,” International Journal Aeronautical

and Space Sciences (2011), Vol. 12, No. 2, pp. 163–174.

[8] S. Ismail and L. Sun, “Decentralized Hungarian-based approach for fast and scalable task

allocation,” in International Conference on Unmanned Aircraft Systems (IEEE, 2017), pp. 23–28.

[9] N. Geng, Z. Chen, Q. A. Nguyen, and D. Gong, “Particle swarm optimization algorithm for the

optimization of rescue task allocation with uncertain time constraints,” Complex & Intelligent Systems

7 (2021), pp. 873–890.

[10] J. Kirk, “Fixed start/end point multiple traveling salesmen problem-genetic algorithm,”

MATLAB® Central File Exchange (2014).

[11] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics

(1955), Vol. 52, No. 1, pp. 7–21.

[12] M. Nanjanath and M. Gini, “Repeated auctions for robust task execution by a robot team,”

Robotics and Autonomous Systems (2010), Vol. 58, No. 7, pp. 900–909.

[13] L. Brunet, H. L. Choi, and J. How, “Consensus-based auction approaches for decentralized task

assignment,” in AIAA guidance, navigation and control conference and exhibit (2008), p. 6839.

[14] L. Johnson, S. Ponda, H. L. Choi, and J. How, “Asynchronous decentralized task allocation for

dynamic environments,” in Infotech@ Aerospace 2011(2011), p. 1441.

[15] W. Zhao, Q. Meng, and P.W. Chung, “A heuristic distributed task allocation method for

multivehicle multitask problems and its application to search and rescue scenario,” IEEE

Transactions on Cybernetics (2016), Vol. 46, No. 4, pp. 902–915.

[16] L. B. Johnson, H. L. Choi, and J. P. How, “Hybrid information and plan consensus in distributed

task allocation,” in AIAA Guidance, Navigation, and Control Conference (2013), p. 4888.

163

