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Abstract: In the 21st century, extensive human engagement in activities such as marine resource 

exploration, maritime transportation, and maritime security has led to a deeper understanding of the 

oceans. This increased interest has spotlighted Autonomous Underwater Vehicles (AUVs), which 

possess the capability to operate independently and covertly, making them a preferred choice for 

diverse underwater tasks. However, as underwater missions grow in complexity, the limitations of 

individual AUVs have spurred the exploration of multi-AUV systems. These systems offer higher 

efficiency, greater intelligence, and enhanced fault tolerance, rendering them indispensable in both 

deep-sea search and rescue missions and national maritime security efforts. Task allocation is a 

central challenge in the realm of multi-AUV systems. Balancing factors like search environments, 

ocean currents, obstacles, and target locations, various intelligent optimization methods have been 

employed. This paper references representative works to explore genetic algorithm-based 

decentralized task allocation and Hungarian algorithm-based decentralized task allocation, examining 

their potential to enhance cooperative underwater searches. Centralized task allocation faces 

robustness and scalability concerns, necessitating decentralized alternatives, particularly for mobile 

multi-agent systems. The presented research underscores the significance of decentralized 

methodologies in optimizing multi-AUV task assignments. The paper elucidates these two 

approaches, discusses their implications, and concludes by presenting an analysis of the results. 

Through this study, the paper contributes to advancing the field of multi-AUV systems and their 

effective coordination for efficient underwater search operations. 

1. Introduction 

Since the 21st century, human engagement in a range of activities including marine resource 

exploration, maritime transportation and maritime security has facilitated a deeper comprehension of 

the oceans. Particularly within these domains, Autonomous Underwater Vehicles (AUVs) have 

gained significant attention from scholars both domestically and internationally. AUVs operate 

independently of external energy sources and require no physical connection to mother ships, 

showcasing exceptional concealment capabilities and an expansive search range. Whether in civilian 

or naval contexts, AUVs exhibit broad potential applications, especially as the virtually exclusive 

option for deep-sea underwater search missions. Nonetheless, as the complexity of AUV search tasks 

continues to mount, the limitations of individual AUV functionalities have led to the prominence of 

multi-AUV systems as a pivotal research direction within the field of underwater robotics. In 

comparison to single AUV systems, multi-AUV systems offer diversified solutions, accompanied by 

elevated work efficiency, heightened levels of intelligence, and enhanced fault tolerance. The 

collaborative search facilitated by multi-AUV systems bears indispensable and irreplaceable 

significance in civilian deep-sea search and rescue endeavors, as well as in the establishment of 

national maritime security. 

Currently, the challenge of task allocation remains a significant obstacle for multi-AUV systems. 

It necessitates a comprehensive consideration of various factors such as the underwater search 

environment, ocean current magnitude and direction, obstacles, restricted zones, and the central 
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position of the target to judiciously allocate different areas awaiting exploration among individual 

AUVs.  

Task allocation algorithms can be categorized into centralized and distributed approaches [1]. Due 

to recognized limitations in robustness and scalability, the need for developing decentralized task 

allocation algorithms has emerged, particularly in the context of multi-agent systems. In a centralized 

setup, a central planner possessing comprehensive information allocates tasks to all agents based on 

specific requirements. However, this approach disregards the potential computational capabilities of 

individual agents and exposes the system to security vulnerabilities. If communication between the 

central planner and agents encounters issues, tasks might remain unassigned, leading to incomplete 

assignments. In contrast, within a decentralized framework, each agent independently determines its 

task allocation using its own computational resources [2]. This approach eliminates the dependency 

on a single central planner and enhances the system's resilience to breakdowns in communication. 

Agents communicate among themselves to resolve conflicts and enhance their allocations. In the 

distributed mindset of task allocation, subsystems lack complete information about the entire system, 

and task allocation is a negotiated process involving multiple robots. Furthermore, these robots 

independently complete task allocation based on their perception of the environment. The application 

of market mechanism-based methods is widespread, with task allocation based on market 

mechanisms relying on negotiation among robots through certain protocols to ultimately achieve task 

distribution. 

In paper [3], the authors present the Consensus Based Parallel Auction and Execution (CBPAE) 

algorithm. This algorithm is designed as a distributed, market-based approach for multi-robot task 

allocation (MRTA). Its primary focus is on dynamically allocating tasks, specifically addressing the 

task allocation challenges encountered within a Multi-Robot System (MRS) operating within a 

healthcare environment, such as a care home. Amanda et al. introduce refinements to the distributed 

Performance Impact (PI) algorithm in their work. They also showcase the outcomes of their 

experimental trials, highlighting how their contributions propel the advancement of the current state-

of-the-art. Specifically, their enhancements prove significant in the realm of single-task, single-robot, 

time-extended, multi-agent task assignment, especially for missions with time-critical requirements 

[4]. In the context of the paper [5], a team of researchers introduces BnB FMS, a distributed algorithm 

tailored for task allocation. This algorithm ingeniously combines online domain pruning with fast-

max-sum techniques. Moreover, it strategically integrates branch-and-bound search during the 

computation of messages that are to be transmitted by a function. This proactive approach facilitates 

the pruning of the state space, thereby curtailing the portions that need to be explored more 

extensively. Patel and colleagues present a pioneering methodology for decentralized multi-agent 

collaborative search within the domain of task allocation. Their approach leverages a decentralized 

genetic algorithm, introducing a novel way to address task allocation challenges [6]. In a similar vein, 

Choi and Kim introduced a two-stage genetic algorithm-centered approach for decentralized 

allocation. Here, each agent utilizes a genetic algorithm to define its task sequence and subsequently 

engages in communication with other agents to optimize costs through task exchange [7]. The 

Decentralized Hungarian (DH) algorithm, akin to the Consensus-Based Auction Algorithm (CBAA), 

was replaced by the Hungarian algorithm [8]. The advantages of Particle Swarm Optimization (PSO) 

algorithm lie in its simplicity, minimal parameter tuning, and rapid convergence. Geng et al. 

introduced an enhanced PSO algorithm for uncertain rescue task allocation with time constraints, 

with a particular focus on robot rescue task assignment [9].  

This study draws inspiration from two seminal references [6] and [8], aiming to incorporate their 

ideas of distribution and decentralization to address practical issues: in underwater target search 

scenarios involving collaborative efforts of multiple Autonomous Underwater Vehicles (AUVs), 

effective task allocation is required. Throughout this process, maintaining optimal allocation and 

minimizing time consumption are crucial factors. Reference [6] employs a continuous running genetic 

algorithm that facilitates the exchange of complete solutions (task sequence sets) among agents. This 

real-time adaptability allows for ongoing refinement of task allocation during execution, potentially 

resulting in global optimization for the team. In contrast, [8] originates from the centralized nature of 
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the original Hungarian algorithm, initially employing a cost matrix encompassing all data for initial 

allocation. Subsequently, an iterative cost minimization process generates the optimal solution. 

Nevertheless, centralized task allocation methods really have limitations in terms of robustness and 

scalability. Therefore, the development of decentralized task allocation algorithms based on the 

Hungarian method becomes pivotal. This study initiates by introducing the two aforementioned 

methods individually, followed by a discussion of their respective characteristics. Finally, the study 

concludes by presenting a data analysis of the results achieved through these methods. Through this 

investigation, the paper contributes to advancing the comprehension of multi-agent systems and offers 

insights into the efficiency of decentralized task allocation approaches. 

2. Methods 

2.1 Decentralized Genetic Algorithm 

The optimization approach proposed by R. Patel et al. in their work [6] primarily focuses on 

decentralization and parallelization. In their study, the researchers introduce a parallelized strategy 

employing a genetic algorithm (GA) to address the task assignment challenge within a multi-agent 

system. Their method involves agents concurrently executing tasks in real-time while refining the 

allocation process. Every agent retains and enhances its individual population of solutions, signifying 

sets of task sequences for upcoming assignments. A key aspect of their approach is the coordination 

and sharing of solutions among agents. Periodically, agents exchange their best solutions and 

integrate received solutions into their own populations. This collaborative exchange of high-quality 

solutions enables agents to reach consensus and take advantage of the inherent parallelism in genetic 

algorithms. Furthermore, by allocating a distinct thread for the GA, agents can persistently search for 

enhanced solutions while carrying out tasks. The decentralized genetic algorithm proposed in this 

research provides a dynamic and adaptive solution for the task allocation problem in a multi-agent 

environment. 

2.1.1 Process of Genetic Algorithm 

The genetic algorithm (GA) is inspired by the evolutionary process in nature and uses simulated 

chromosome crossover, mutation, and selection to solve optimization problems. In this study, the 

chromosome encoding and decoding method is adopted from the reference [10]. The overall flow of 

the genetic algorithm is as follows: 

Firstly, I initialize the initial population of chromosomes. This corresponds to the section where 

the initial population of routes and breakpoints is generated. Secondly, I calculate the fitness of 

individuals in the initial population, this aligns with the code snippet where each individual's total 

distance is calculated and stored in the total_dist array. Thirdly, I select individuals from the current 

population for chromosome crossover and mutation to generate offspring population. The code 

achieves this by performing genetic operations like flipping, swapping, sliding, etc., to generate new 

routes and breakpoints. Subsequently, I evaluate the fitness of individuals within the offspring 

population. Following the generation of the new population via genetic operations, I compute and 

store the fitness of individuals in the offspring population in the total_dist array. Then, I replace the 

existing population with the offspring population. I check for a predefined number of iterations or if 

the fitness of the population has converged. If these stopping conditions are fulfilled, the iteration is 

halted, and the outcome is returned; otherwise, I return to step 3. This part of the process involves 

updating the population with the newly generated individuals and checking the termination criteria 

such as the number of iterations or convergence of the fitness. The loop in the code iterates through 

multiple generations until the termination conditions are met. 

2.1.2 Parallel Distributed Genetic Algorithm 

Each agent operates with two threads: the first thread manages the execution of a Genetic 

Algorithm (GA) and the second thread orchestrates the execution of the task sequence. This is 

illustrated in the mathematical model [6],  where 𝒙𝒊 = (𝑥𝑖1, … , 𝑥𝑖𝑛(𝑖)) is a task sequence, 𝑑(𝑥𝑖𝑗 , 𝑥𝑖𝑘) 
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is the length between tasks 𝑥𝑖𝑗 and 𝑥𝑖𝑘 ,𝑞1, … , 𝑞𝑚 are the initial locations, 𝑣 is the speed of the agents, 

𝑐𝑑(𝒙𝒊) = 𝑑(𝑞𝑖 , 𝑥𝑖1) + ∑ 𝑑(𝑥𝑖,𝑗−1, 𝑥𝑖𝑗)
𝑛(𝑖)
𝑗=2  represents the distance of agent 𝑖  to complete the task 

sequence. 

Here I introduce two cost function, which are 

𝑐(𝒙) = ∑ 𝑐𝑑(𝒙𝒊)

𝑚

𝑖=1

(1) 

𝑐(𝒙) =
max{𝑐𝑑(𝒙𝟏), … , 𝑐𝑑(𝒙𝒊)}

𝑣
. (2) 

The structure is depicted in Figure 1 [6]. The initial thread employs an adapted version of a known 

GA [11], designed for solving the mTSP (multiple Traveling Salesmen Problem), to tackle the task 

allocation issue. 

 

Figure 1. Basic structure [6] 

The pseudocode for the Task Sequence Execution thread is provided in Algorithm 1 [6]. 
Algorithm 1: Pseudocode for task sequence execution run in a separate thread on agent i. 
1.  function TASK_SEQUENCE_EXECUTION()  
2.  while mission not complete:  
3.  if num_agents > num_locations: 
4.  current_solution ← solution from nearest neighbors  
5.  else:  
6.  current_solution ← current best solution from GA  

7.  end if  
8.  task_sequence ← current_solution{i}  
9.  execute(task_sequence)  

10.  send information to all other agents  

11.  receive information from whoever responds  
12.  store received solutions for incorporation into GA  
13.  end while  
14.  end function 

Algorithm 1 starts from a function defined as " EXECUTION_TASK_SEQUENCE". The main 

loop of the function runs as long as tasks are not completed. Within this loop, the following steps are 

continuously executed.  Firstly, it checks if the count of agents involved in the tasks is greater than 

the count of locations to be covered. This condition (number_of_agents > number_of_locations) 

implies that there are more agents involved in the tasks than the number of tasks to be completed. 

This might suggest a scenario where tasks need to be allocated among agents. If this condition is met, 

the current solution of agent i is assigned using a solution generated by a nearest-neighbor method. 

This approach aims to efficiently allocate tasks based on the proximity between agents and task 

locations. Secondly, if the condition in step 1 is not met (number_of_agents <= 

number_of_locations), the current best solution of agent i is assigned, which was previously generated 

by a genetic algorithm (GA) used for optimizing the task sequence. Now, the algorithm holds the 

current solution of agent i. The sequence of tasks to be executed is determined based on the assigned 

current solution from the previous steps. Then, agents start executing the assigned task sequence. 
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After executing the task sequence, agents send messages to all other agents. This may include the 

status of tasks executed or any relevant updates. Next, agents wait to receive responses from other 

agents regarding the messages they sent. Upon receiving responses, agents process the received 

information. This information may include solutions or updates related to task sequences executed 

by other agents. The received solutions are stored, possibly for integration into the aforementioned 

genetic algorithm. These received solutions can contribute to improving the optimization of task 

sequences across all agents. After that, the loop continues executing the above steps as long as tasks 

are not completed. The "EXECUTION_TASK_SEQUENCE " function ends when tasks are completed. 

This pseudocode outlines the algorithm for agents to execute task sequences within a larger task. 

The algorithm adjusts its approach based on the count of agents and tasks, employing either a nearest-

neighbor strategy or a genetic algorithm for task allocation. Agents execute their task sequences, 

communicate with other agents, and incorporate received solutions into their optimization process, 

ensuring efficient task execution and collaboration among multiple agents. 

2.2 Hungarian Algorithm and DHBA Algorithm 

When the Hungarian algorithm is applied in an industrial environment, it demonstrates a rapid 

ability to solve task assignment problems, exhibiting excellent efficiency. The Hungarian algorithm 

employs specialized procedures to solve matching problems or more general allocation planning 

problems. It produces the minimum matching based on the provided cost matrix. 

2.2.1 Hungarian Algorithm 

This algorithm employs a cost matrix for allocation, where each element, cij, symbolizes the cost 

(or inverse of the reward) linked with assigning task j to agent i. To achieve an optimal assignment, 

Algorithm 2 [8] defines matrix operations through the subsequent steps. 
Algorithm 2 Hungarian Algorithm 

1.  Form a n by n cost matrix 

2.  Step 1: Subtract the smallest entry in each row from all the entries of its row 

3.  Step 2: Subtract the smallest entry in each column from all the entries of its column 

4.  Step 3: Draw lines through appropriate rows and columns so that all the zero entries of the cost matrix are 

covered and the minimum number of such lines is used 

5.  Step 4: 

6.  procedure Test for optimality: 

7.  if the minimum number of covering lines is n: 

8.  An optimal assignment of zeros is possible and the assignment is finished 

9.  end if 

10.  if the minimum number of covering lines is less than n: 

11.  An optimal assignment is not yet possible. In that case, proceed to Step 5 

12.  end if  

13.  end procedure 

14.  Step 5: Determine the smallest entry not covered by any line. Subtract this entry from each uncovered row, 

and then add it to each covered column. Return to Step 3 

To begin, I construct an n x n matrix to signify task-to-agent assignment costs. Each cell (i, j) in 

the matrix denotes the cost of assigning task i to agent j. I initiate row reduction by finding the 

minimum value within each row and subtracting it from all entries in that row. This step normalizes 

the minimum value in each row to zero. Then, I proceed to column reduction. By detecting the 

smallest value in each column and deducting it from all entries within that column, I normalize the 

minimum value in each column to zero. After this, the process of line covering is initiated. This 

involves strategically placing lines across rows and columns to encompass all zero entries in the 

matrix. The objective is to cover the maximum number of zeros with the fewest lines, thereby 

identifying potential assignments for an optimal solution. For assessing optimality, I examine whether 

the minimum lines required for coverage match n (the number of tasks/agents). If they do, an optimal 

assignment is achieved, and the algorithm terminates. If the minimum lines used are fewer than n, I 

move on to Step 5. In the final step, involving matrix updating and repetition, I identify the matrix's 

smallest entry that isn't enclosed by any line. This entry's value is subtracted from every uncovered 

row and added to each covered column. Subsequently, I loop back to Step 3, repetitively executing 
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the procedure of line coverage and assessing optimality. 

In the mentioned paper, the auction algorithm and the Hungarian algorithm's performance is 

conducted. The analysis focuses on how the average time required for the execution of each group of 

drones increases with the growing number of agents. Table 1 in [8] clearly indicates an exponential 

growth trend in the computation time needed for the auction algorithm to accomplish the allocation. 

The Hungarian algorithm demonstrates a clear advantage in terms of scalability. 

Table 1. Mean time of Auction and Hungarian Algorithm. [8] 

Groups Average time (sec) 

A H 

#1 2 0.33 0.34 

#2 4 0.34 0.34 

#3 8 0.36 0.37 

#4 12 0.47 0.38 

#5 16 0.85 0.38 

#6 24 2.57 0.41 

#7 32 8.13 0.42 

#8 50 71.01 0.43 

2.2.2 Decentralized Hungarian-Based Algorithm (DHBA) 

This paper introduces a Decentralized Hungarian-Based Algorithm (DHBA) for tackling the task 

allocation problem in scenarios where network connectivity is limited. In this context, each 

Autonomous Underwater Vehicle (AUV) only interacts with a subset of agents, forming local 

networks. Consequently, agents possess partial information and lack global awareness. 

The algorithm's primary goal is to attain an optimal task allocation that minimizes overall costs. 

To achieve this, ensuring network connectivity is crucial, indicated by the positive value of the second 

smallest eigenvalue (𝜆2) of the network's Laplacian matrix. This safeguards the convergence of each 

agent's cost matrix to a stable state during the algorithm's final phase. A loss of network connectivity 

(𝜆2 = 0) leads to deviation from the optimal solution. 

The core idea of the DHBA is as follows: Firstly, each agent possesses a cost matrix with 

information about tasks, such as distances to targets. Secondly, at each step, agents communicate 

directly with their neighbors and exchange updated data. Each agent merges its cost matrix data with 

its neighbors' data to obtain more accurate task allocation information. Subsequently, through the 

iterative process, each agent gradually obtains the same cost matrix, representing the optimal task 

allocation solution. Next, the algorithm optimizes task allocation iteratively by exchanging 

information within the local network, gradually converging to the optimal solution.  
Algorithm 3 DHBA Algorithm  

1.  procedure Initialization:  

2.  For AUV 𝑖, form a cost matrix 𝐶𝑖, in which each element 𝐶𝑟𝑗
𝑖  represents the distance between AUV 𝑟 to target 𝑗, such 

that:  

3.  if 𝑟 = 𝑖: 
4.   𝐶𝑟𝑗

𝑖 = √(𝑋𝑢(𝑟) − 𝑋𝑡(𝑗))2 + (𝑌𝑢(𝑟) − 𝑌𝑡(𝑗))2 

5.  else: 

6.   𝐶𝑟𝑗
𝑖 = ∞ 

7.  end if  

8.  end procedure  

9.  procedure Task allocation  

10.  Phase 1: Apply Hungarian Algorithm (Algorithm 3) and get assignment for AUV 𝑖 
11.  Phase 2: Update 𝐶𝑖    
12.  procedure For AUV 𝑖:   
13.  Connect with neighbor (AUV) 𝑘 and receive 𝐶𝑘  
14.  Update 𝐶  𝑖 such that:  

15.  if 𝐶𝑖𝑗
𝑘 ≠ ∞: 

16.  𝐶𝑖𝑗
𝑖 = 𝐶𝑖𝑗

𝑘   

17.  end if  

18.  end procedure  

19.  Return to Phase 1 

20.  end procedure 

157



The pseudocode for DHBA is provided in Algorithm 3. Initially, every unmanned aerial vehicle 

(AUV) detects its own position (𝑋𝑢(𝑖), 𝑌𝑢(𝑖)) , along with the positions of neighboring AUVs 

(𝑋𝑢(𝑘),  𝑌𝑢(𝑘)), as well as the locations of all targets (𝑋𝑡(𝑗),  𝑌𝑡(𝑗). Subsequently, AUV 𝑖 constructs 

the neighbor matrix 'G' based on the collected data. Additionally, AUV 𝑖 generates an individualized 

cost matrix 𝑪𝑖. The entries within this matrix are predominantly set to infinity, except for the 𝑖𝑡ℎ row. 

This row encompasses the distances between AUV 𝑖 and other neighboring AUVs within its local 

network. The DHBA (Decentralized Hungarian-Based Algorithm) algorithm operates through a 

cyclic process, alternating between two primary phases. In the initial phase, each AUV employs the 

centralized Hungarian algorithm outlined in Algorithm 2. This phase's purpose is to guarantee that 

every AUV is assigned a target for the entire mission duration, thereby achieving an optimal solution 

for task allocation. Following this, the algorithm advances to the second phase. Here, AUV 𝑖 
establishes connections with its neighboring AUVs, facilitating the exchange of cost matrices. 

Consequently, AUV 𝑖 updates its own cost matrix in accordance with the received data. During this 

communication stage, AUV 𝑖  compares its cost matrix with those of its neighbors to gain 

supplementary information, which aids in refining task allocation optimization. Progressing through 

Phase 2, the aim is for AUV 𝑖’s cost matrix to synchronize with the cost matrices of all other 

neighboring AUVs. As each AUV successfully assimilates global network information into its cost 

matrix, the task allocation converges to a stable state. This convergence signifies the completion of 

the DHBA algorithm's execution. 

3. Results 

3.1 Section of Decentralized GA 

3.1.1 Testing Procedure for decentralized GA 

In study [6], the researchers conducted a comparative analysis between the decentralized Genetic 

Algorithm (GA) and alternative decentralized task allocation methods. This assessment involved a 

range of problem instances with varying sizes. To ensure the results' consistency despite fluctuations 

in simulation conditions and the stochastic nature of the genetic algorithm (GA) approach, each case 

was subjected to 20 distinct trials. Our implementations were carried out using the Python 

programming language, while the simulations were conducted through ROS. These discrete processes, 

effectively mirroring the functionality of a decentralized system. For effective inter-agent 

communication, each agent featured a communication interface scripted in C++, enabling seamless 

message dissemination among all system agents. The agents' velocity was set at a uniform 5 meters 

per second, and the invocation frequency was maintained at 0.01 seconds.  

In reference to [6], a series of tests were carried out across five distinct instances. In these instances, 

the points were chosen at random in an area spanning 100 meters by 100 meters. The instances had 

different sizes (𝑛 × 𝑚) of 10 × 5, 20 × 4, 30 × 3, 35 × 5, and 40 × 6. Instances of sizes 30 × 3 and 

35 × 5 are illustrated in Figure 2 [6] below. 

 
(a) (b) 

Figure 2. (a) 30 × 3 and (b) 35 × 5. The entities denoted as "AUV#" are represented by circular 

shapes, while the points of interest are visually depicted as red squares. The axes on the graph 

provide a metric for position, measured in meters. [6] 
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Multiple experiments were also conducted in the paper, comparing various decentralized task 

allocation methods as benchmarks. These methods included Greedy Nearest Neighbor (NN), 

Decentralized Hungarian Algorithm (DH) [12], Consensus-Based Auction Algorithm (CBAA) [13], 

Asynchronous Consensus-Based Bidding Algorithm (ACBBA) [14], Performance Impact Algorithm 

(PIA) [15], and Hybrid Information and Plan Consensus (HIPC) [16]. 

In these methods, a common underlying structure was employed. Figure 3 [6] below illustrates 

this structure, with only one task sequencing execution thread running. The execution thread 

perpetually operates in a continuous manner, alternating between two primary phases. 

 

Figure 3. Basic structure. [6] 

3.1.2 Results Analysis for decentralized GA 

The Paper simultaneously considered performance metrics of total time and total distance. A 

comprehensive evaluation of all methods and variables was undertaken to analyze their individual 

performance across different metrics. The objective was to determine which variables exhibited the 

most favorable outcomes for each metric. 

Table 2 [6] below (Time) depicts the average time taken to access all the designated points of 

interest for each instance when employing each method. 

Table 2. The average time (measured in sec) required to cover all designated points was calculated 

more than 20 separate trials on every approach and instance. The bold represent the most optimal 

averages achieved for each instance. [6]  

 Instance 

Approach 10 * 5 20 * 4 30 * 3 35 * 5 40 * 6 

NN 19.6 45.5 41.6 33.4 26.2 

CBAA-ms 19.6 45.5 41.6 33.4 26.2 

CBAA-mm 14.7 28.8 41.4 27.6 26.0 

DH-ms 11.6 29.6 42.1 25.8 23.5 

DH-mm 11.6 29.6 42.7 25.9 23.3 

ACBBA-ms 15.1 24.1 34.4 27.6 26.8 

ACBBA-mm 14.6 25.5 34.4 24.6 25.8 

PIA 19.2 31.3 45.1 34.6 31.8 

HIPC 11.8 27.9 34.4 24.0 24.7 

GA-ms 12.0 26.0 33.9 21.8 23.6 

GA-mm 12.5 23.3 33.8 24.2 23.3 

GA-multi 14.1 22.5 33.3 22.3 22.5 

In the case of 10 * 5 instance, both the DH-ms and DH-mm methods exhibit the best average time 

of 11.6 seconds, showcasing their outstanding performance for this smaller-scale problem. Also, the 

GA-ms method performs well with an average time of 12.0 seconds. Shifting to 20 x 4 scenario, the 

GA-multi method stands out with the best average time at 22.5 seconds, demonstrating impressive 

results. Notably, the GA-mm method also performs admirably with an average time of 23.3 seconds. 

When it comes to 30 * 3 instance, the GA-mm method takes the lead with the best average time of 
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33.3 seconds, outperforming alternative methods. Both the HIPC and ACBBA methods also hold up 

well, each achieving an average time of 34.4 seconds. In the context of 35 * 5 instance, it's the GA-

ms and GA-multi variants that shine, recording the best average times of 21.8 and 22.3 seconds, 

respectively, and significantly outpacing other approaches. Finally, for 40 * 6 instance, the GA-multi 

method once again demonstrates superiority with the best average time of 22.5 seconds, highlighting 

its remarkable efficiency. 

In summary, in most instances, variants of the decentralized GA method exhibit impressive 

performance, particularly the GA-multi method, which excels on medium and large-scale instances. 

The DH methods perform well on small-scale problems but show relatively weaker performance as 

the problem scale increases. The CBAA and PIA methods have relatively poorer performance, and 

their suitability may depend on specific scenarios. 

Table 3. The average total distance covered by all agents. The bold values highlight the most 

favorable averages achieved for each specific instance. [6] 

 Instance 

Approach 10 * 5 20 * 4 30 * 3 35 * 5 40 * 6 

NN 486.3 903.8 603.3 826.8 773.2 

CBAA-ms 301.2 517.6 606.7 689 719.4 

CBAA-mm 301.5 519.8 602.2 625.2 709.2 

DH-ms 256.8 517.8 615.1 584.2 649.6 

DH-mm 256.2 516.6 626.7 585.1 641.1 

ACBBA-ms 327.8 404.3 441.1 624.8 690.8 

ACBBA-mm 334.5 428.8 439.7 520.8 683 

PIA 209.8 482.3 508.1 481.5 563.9 

HIPC 198.1 401.6 445.0  443.0  590 

GA-ms 222.7 448.9 456.6 460.5 600 

GA-mm 268.1 429.6 468.8 553.9 636.7 

GA-multi 245.6 404.6 455.8 494.9 604 

Table 3 [6] presents the average cumulative distances traveled by all agents for each method across 

the five instances. Based on the data in the table (where bold numbers represent the shortest distances 

for each instance), unlike the case of minimizing total time, the decentralized Genetic Algorithm (GA) 

does not exhibit a significant advantage over other algorithms in terms of minimizing the total 

distance. 

Firstly, GA does not consistently exhibit the best performance across all instances. Apart from 

specific cases where certain variants of GA might perform well, such as GA-multi showing 

comparable performance to the HIPC method in 20 x 4 instance, GA does not dominate in any 

instance. Except for the PIA and HIPC methods, the GA-ms method outperforms most others in 40 x 

6 instance. Additionally, with increasing instance sizes, the decentralized GA variants consistently 

exhibit superior performance compared to other methods. This observation indicates that the method 

showcases commendable scalability. 

Overall, while the decentralized Genetic Algorithm approach produces task assignments that excel 

over other methods in terms of the minimum time objective, the allocations it finds are not superior 

in terms of the minimum total objective. This might be attributed to the fact that other methods might 

find optimizing the minimum time objective more challenging, as it requires knowledge of task 

sequences of other agents, which isn't a barrier for the decentralized Genetic Algorithm method due 

to each agent considering a complete solution. On the other hand, other methods might be more adept 

at optimizing the minimum total objective, especially in cases where the instance size isn't large. 

Therefore, for smaller instances, the decentralized Genetic Algorithm method fails to find better 

solutions. Furthermore, the condition mandating that every agent must be allocated at least one task 

could potentially restrict the Genetic Algorithm's ability to discover solutions with more optimal 

overall travel distances. This is because, in specific scenarios, employing fewer agents might lead to 

a reduction in the collective travel distance. 

 

 

160



3.2 Section of DHBA 

3.2.1 Test Procedure for DHBA 

The study involved a comparative analysis between the DHBA (Decentralized Hungarian-Based 

Algorithm) proposed in the paper and the existing CBAA (Consensus-Based Auction Algorithm). 

Experiments were conducted using a cluster of Autonomous Underwater Vehicles (AUVs) assigned 

to monitor multiple targets. The positions of both AUVs and targets were chosen randomly within a 

designated application space measuring 𝑚 × 𝑛 units. The communication range was established at 

𝑅 = 𝑚/2. The AUVs were categorized into six groups, as detailed in Table 4 [8] provided below. 

Throughout these runs, critical parameters such as 𝜆2  (a specific variable), the final assignment 

outcomes, and iterations required to reach convergence were meticulously documented. 

Table 4. Simulation setup. [8] 

Group Agents Count Area Size (units) 

1 5 5 

2 10 10 

3 20 20 

4 30 30 

5 40 40 

6 50 50 

3.2.2 Results Analysis for DHBA 

During each simulation, 𝜆2 values, final assignments, and convergence steps for both algorithms 

were recorded. These results are visualized in Figure 4 [8]. 

 

Figure 4. The required iteration count to achieve convergence towards the ultimate assignment, 

depicted as a function of λ2, varies across distinct groups: (a) 5 agents, (b) 10 ~, (c) 20 ~, (d) 30 ~, 

(e) 40 ~ and (f) 50 ~. [8] 

Based on the presented figures, it is evident that when 𝜆2 is larger, the convergence speed of both 

algorithms will be faster. When 𝜆2 approaches 0, indicating a fragile network connection, there is a 

higher likelihood of conflicts, and CBAA exhibits a noticeably slower convergence speed compared 

to DHBA. Consequently, both algorithms necessitate additional iterations to attain the final 

assignment outcomes. When the number of agents is set to 5 , CBAA and DHBA demonstrate 

relatively similar convergence speeds. However, as the number of agents increases, the difference 

between the two becomes more pronounced. 

Across all five scenarios, DHBA consistently demonstrates superior performance compared to 

CBAA. This can be attributed to DHBA's dependence solely on the connectivity of the AUV system. 

In scenarios with loosely connected networks where the value of 𝜆2 is significantly smaller than 1, 

the steps necessary to achieve the final assignment are equivalent to the total number of AUVs within 

the network. Conversely, due to the requirement for more steps to resolve conflicts, CBAA mandates 

a higher number of iterations for convergence. Moreover, CBAA's reliance on auction algorithms 
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generally leads to increased analysis time in comparison to the Hungarian algorithm employed within 

DHBA. 

When contrasted with CBAA, the efficacy of the proposed DHBA in yielding optimal assignments 

becomes evident. The quantified cost difference, denoted as ∆cost, is outlined as the divergence 

between the global costs produced by CBAA (CCBAA) and DHBA (CDHBA) — in essence, ∆cost 

= CCBAA - CDHBA. This relationship is visually depicted in the subsequent Figure 5 [8]. 

 

Figure 5. The cost discrepancy, represented as ∆cost, between CBAA and DHBA across various 

agent groups in relation to distinct 𝜆2 values. [8] 

The depicted figure vividly displays the positive nature of cost differences across all instances, 

and these differences amplify as 𝜆2  increases. Notably, the fluctuations in cost disparities across 

diverse instances remain relatively subdued with the upsurge in 𝜆2  values. This consistency 

underscores DHBA's persistent superiority over CBAA, preserving a well-balanced advantage.  

These outcomes affirm that the proposed DHBA consistently outperforms CBAA. This is 

attributed to the inherent characteristics of the original Hungarian algorithm, allowing DHBA to 

consistently furnish optimal solutions for linking multi-agent networks. CBAA's reliance on an 

auction mechanism introduces deviations from optimality, particularly as the agent count and 

conflicts escalate. Conversely, the DHBA, leveraging a centralized Hungarian algorithm, ensures 

absolute optimality in its results. 

4. Conclusion 

This paper leverages two innovative papers to conduct an in-depth analysis of the multi-AUV task 

allocation optimization problem and achieves successful resolutions. It demonstrates the viability of 

the decentralized algorithmic approach in this context. The first method employs a parallelized 

genetic algorithm. The results indicate that the decentralized genetic algorithm rapidly converges to 

high-quality solutions on the considered instances, outperforming existing methods for task 

completion time on larger instances. The second method develops a decentralized task allocation 

algorithm based on the Hungarian algorithm. It concludes that the algorithm consistently generates 

optimal solutions as long as network connectivity is maintained. Moreover, it outperforms CBAA in 

various aspects, including performance, analysis time, convergence speed, allocation optimality, and 

computational demands. To summarize, both approaches showcase distinct advantages, notably 

excelling in performance compared to conventional algorithms. Both algorithms robustly address the 

task allocation challenge posed in this underwater search scenario. 
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